The present case showed that isolated lingual dystonia can be caused by thalamic infarction. Therefore, thalamic lesions should be considered in cases of acute onset lingual dystonia.

Hye-Jin Kim, MD
Myoung C. Lee, MD
Jong S. Kim, MD, PhD
Sun J. Chung, MD, PhD
Hyo-Jin Kim, MD
Miseon Kwon, PhD, CCC-SLP
Hae-Won Shin, MD*

Department of Neurology
Parkinson/Alzheimer Center
Asan Medical Center
University of Ulsan College of Medicine, Seoul, Korea

*E-mail: shinhw@amc.seoul.kr

References

Potential conflict of interest: There has been no financial support for the study reported in this manuscript.

Published online 9 June 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mds.22667
movements or contractions till the concert day when he first noticed the problem.

Physical exam revealed an apparently forced flexion of the index finger that appeared only during piano playing (Fig. 1A), and the impossibility to maintain flexion of the thumb without accompanying flexion of the distal interphalangeal joint of the index finger (1C). Neurological examination, nerve conduction test, and electromyogram did not reveal other abnormalities. Our working diagnosis was task-specific focal dystonia in a patient with Linburg-Comstock syndrome.

After surgical release of the tendons (Fig. 1D), the patient was able to perform independent distal interphalangeal joint flexion of the index and the thumb (Fig. 1E). He began cautiously to practice piano 4 days after the operation, and reported a significant, albeit not complete, improvement in his performance. Unfortunately, the improvement remitted after a few days, and he began to complain again of involuntary flexion of the index finger. We initiated a neuro-rehabilitation program based on Sensory Motor Retuning that involved daily sessions of work on the piano performing seven different digit combinations while some of the fingers splinted for ~90 min, followed by practice of slow and easy movements without splints. Every month, the practice schedule, specific exercises, kind of digit combinations, and digit positions during the work were checked and adjusted if needed. The goal is to promote alternative motor programs based on modification of the proprioceptive input. The patient showed a progressive improvement of his condition, and task-induced involuntary flexion of the index finger was gone after 6 months (Fig. 1B). Eventually, he returned to his professional activity and his symptoms have not returned over the past 2 years.

The Linburg-Comstock syndrome is a congenital condition and, therefore, our patient certainly had the mechanical constraints related to it all his life. Likely, he was well adapted to this condition, with no apparent motor difficulties until playing the Chopin concert. As this piece does not allow alternative movements, he was forced to train in adverse biomechanical conditions, which might have led to the development of unwanted motor synergies and ultimately the manifestation of focal dystonia.

After surgical repair of the Linburg-Comstock syndrome, biomechanical, cutaneous, and proprioceptive changes appear to have been sufficient for a transient improvement of our patient’s dystonia. In some musicians, focal dystonia can be relieved by postural or mechanical strategies, like having a piece of tape attached to one finger, or holding an object between two fingers. Such “tricks” might work because changes in sensory inputs may improve selection of motor commands or minimize abnormalities of sensory processing. Unfortunately, dystonic movements often reappear after a variable time of practice (minutes to days). Similarly, the post-surgical benefit in our patient was time-limited but further recovery was possible with Sensory Motor Retuning, which might have induced a more consistent change in the dysfunctional central nervous system circuits.

Our case reveals that, even when an apparent precipitating event is clearly recognized, dystonia, which involves a plastic change in the central nervous system, may remain after the apparent precipitating cause has been removed. The process of re-learning the specific motor task, such as with Sensory Motor Retuning, may succeed in improving motor control. However, we speculate that, in the particular case reported here, surgical intervention could have been partially useful by facilitating re-education under more favorable biomechanical conditions.

LEGENDS TO THE VIDEO

Segment 1. Flexion of the interphalangeal joint of the thumb is not possible without index finger flexion. The
patient was requested to flex the thumb but this was not possible to do in isolation (without flexing the index finger too), due to an anomalous connection between the tendons of the two muscles.

Segment 2. Involuntary index finger flexion and middle finger extension. After practicing piano playing and trying to perform movements requiring simultaneous thumb flexion and index extension, the patient began to feel involuntary movements on the index and middle finger.

Segment 3. Post-surgery: flexion of the interfalangeal joint is now possible without simultaneous index flexion. Surgical liberation of the anomalous tendinous connections allowed isolated thumb movements.

Segment 4. Reduction of involuntary movements. Surgical liberation of the tendons led to a clear amelioration of motor performance, with less unwanted index finger flexion and middle finger extension.

Segment 5. Involuntary movements reappeared after 15 days of practicing piano. The patient was asked to slowly return to piano practice after surgery. However, the involuntary index finger flexion and middle finger extension reappear 2 weeks after starting practice.

Segment 6. Involuntary movements improved after 6 months of reeducation. Guided repetitive daily exercises on the piano led to a significant improvement of finger control, with a consistent reduction in index finger flexion and middle finger extension.

Jaume Rosset-Llobet, MD*
Institut de Fisiologia i Medicina de l’Art-Terrassa
Barcelona, Spain
*E-mail: info@institutart.com

Marc Garcia-Elias, MD
Institut Kaplan
Barcelona, Spain

Jordi Montero, MD
Servei de Neurologia
Hospital Universitari de Bellvitge
Barcelona, Spain

Josep Valls-Solé, MD
Servei de Neurologia
Hospital Clínic de Barcelona
Barcelona, Spain

Àlvaro Pascual-Leone, MD
Berenson-Allen Center for Noninvasive Brain Stimulation
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, Massachusetts, USA

Institut Guttmann de Neurorehabilitacio
Universitat Autònoma
Barcelona, Spain

References

“Acquired” Hepatocerebral Degeneration in a Patient Heterozygote Carrier for a Novel Mutation in ATP7B Gene

Acquired hepatocerebral degeneration (AHD) is a rare type of hepatic encephalopathy characterized by neuropsychiatric symptomatology, and peculiar neuroradiologic findings, without the clinical evidence of Wilson’s disease (WD).1,2 We studied a patient with AHD responsive to penicillamine who was heterozygote carrier for a novel mutation in the ATP7B gene, and discussed the possible role of the mutation in facilitating the appearance of the syndrome.

A 37-year-old man with liver cirrhosis related to chronic hepatitis C was admitted because of progressive consciousness impairment. Family history was negative for WD. Ammoniemia was 176 μmol/L (NR, 9–33 μmol/L); total bilirubin 1.71 mg/dL (NR, 0.2–1.3 mg/dL); serum albumin 2.6 g/dL (NR, 3.3–5 g/dL); AST 62 U/L (NR, 10–45 U/L). Electroencephalogram disclosed diffuse slow wave activity. After rifaximin, lactulose, and branched chain amino acid infusion, his arousal state went back normal in about 12 hours, and ammonia levels decreased to 94 μmol/L.

Neurological examination revealed bradykinesia, sialorrhea, dystarthis, mild rest tremor, in the upper limbs, prevalence on the right side, postural instability, and camptocormia. Moreover, he showed depression and anxiety. The MMSE had normal scores (27/30).

Serum ceruloplasmin, cupremia, and cupruria were within the reference values. Ocular slit-lamp examination did not reveal Kayser-Fleischer ring. CSF examination revealed increased manganese concentration (2.9 μg/L; NR, 0.88 ± 0.76 μg/L), while copper and iron levels were within normal values. Brain MRI showed increased signal intensity in basal ganglia bilaterally on T1-weighted images (Fig. 1A,B), Lurodopa and pramipexole were of no benefit. After informed consent, he was treated with penicillamine 900 mg daily and trihexyphenidyl 2 mg twice daily. In the following 5 days, psychiatric disturbances progressively abated, while bradykinesia,